TSTP Solution File: SET651^3 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SET651^3 : TPTP v8.1.2. Released v3.6.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 14:39:45 EDT 2023

% Result   : Theorem 0.20s 0.54s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem    : SET651^3 : TPTP v8.1.2. Released v3.6.0.
% 0.00/0.14  % Command    : do_cvc5 %s %d
% 0.18/0.35  % Computer : n016.cluster.edu
% 0.18/0.35  % Model    : x86_64 x86_64
% 0.18/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.18/0.35  % Memory   : 8042.1875MB
% 0.18/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.18/0.35  % CPULimit   : 300
% 0.18/0.35  % WCLimit    : 300
% 0.18/0.35  % DateTime   : Sat Aug 26 14:02:57 EDT 2023
% 0.18/0.35  % CPUTime    : 
% 0.20/0.49  %----Proving TH0
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  % File     : SET651^3 : TPTP v8.1.2. Released v3.6.0.
% 0.20/0.49  % Domain   : Set Theory
% 0.20/0.49  % Problem  : Domain of R (X to Y) a subset of X1 => R is (X1 to Y)
% 0.20/0.49  % Version  : [BS+08] axioms.
% 0.20/0.49  % English  : If the domain of a relation R from X to Y is a subset of X1
% 0.20/0.49  %            then R is a relation from X1 to Y.
% 0.20/0.49  
% 0.20/0.49  % Refs     : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% 0.20/0.49  %          : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom
% 0.20/0.49  %          : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% 0.20/0.49  % Source   : [Ben08]
% 0.20/0.49  % Names    :
% 0.20/0.49  
% 0.20/0.49  % Status   : Theorem
% 0.20/0.49  % Rating   : 0.38 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% 0.20/0.49  % Syntax   : Number of formulae    :   72 (  35 unt;  36 typ;  35 def)
% 0.20/0.49  %            Number of atoms       :   93 (  43 equ;   0 cnn)
% 0.20/0.49  %            Maximal formula atoms :    7 (   2 avg)
% 0.20/0.49  %            Number of connectives :  132 (   8   ~;   5   |;  18   &;  90   @)
% 0.20/0.49  %                                         (   1 <=>;  10  =>;   0  <=;   0 <~>)
% 0.20/0.49  %            Maximal formula depth :    6 (   1 avg)
% 0.20/0.49  %            Number of types       :    2 (   0 usr)
% 0.20/0.49  %            Number of type conns  :  215 ( 215   >;   0   *;   0   +;   0  <<)
% 0.20/0.49  %            Number of symbols     :   43 (  40 usr;   6 con; 0-4 aty)
% 0.20/0.49  %            Number of variables   :  109 (  81   ^;  20   !;   8   ?; 109   :)
% 0.20/0.49  % SPC      : TH0_THM_EQU_NAR
% 0.20/0.49  
% 0.20/0.49  % Comments : 
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Include basic set theory definitions
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  thf(in_decl,type,
% 0.20/0.49      in: $i > ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(in,definition,
% 0.20/0.49      ( in
% 0.20/0.49      = ( ^ [X: $i,M: $i > $o] : ( M @ X ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(is_a_decl,type,
% 0.20/0.49      is_a: $i > ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(is_a,definition,
% 0.20/0.49      ( is_a
% 0.20/0.49      = ( ^ [X: $i,M: $i > $o] : ( M @ X ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(emptyset_decl,type,
% 0.20/0.49      emptyset: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(emptyset,definition,
% 0.20/0.49      ( emptyset
% 0.20/0.49      = ( ^ [X: $i] : $false ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(unord_pair_decl,type,
% 0.20/0.49      unord_pair: $i > $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(unord_pair,definition,
% 0.20/0.49      ( unord_pair
% 0.20/0.49      = ( ^ [X: $i,Y: $i,U: $i] :
% 0.20/0.49            ( ( U = X )
% 0.20/0.49            | ( U = Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(singleton_decl,type,
% 0.20/0.49      singleton: $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(singleton,definition,
% 0.20/0.49      ( singleton
% 0.20/0.49      = ( ^ [X: $i,U: $i] : ( U = X ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(union_decl,type,
% 0.20/0.49      union: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(union,definition,
% 0.20/0.49      ( union
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            | ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(excl_union_decl,type,
% 0.20/0.49      excl_union: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(excl_union,definition,
% 0.20/0.49      ( excl_union
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( ( X @ U )
% 0.20/0.49              & ~ ( Y @ U ) )
% 0.20/0.49            | ( ~ ( X @ U )
% 0.20/0.49              & ( Y @ U ) ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(intersection_decl,type,
% 0.20/0.49      intersection: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(intersection,definition,
% 0.20/0.49      ( intersection
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            & ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(setminus_decl,type,
% 0.20/0.49      setminus: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(setminus,definition,
% 0.20/0.49      ( setminus
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            & ~ ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(complement_decl,type,
% 0.20/0.49      complement: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(complement,definition,
% 0.20/0.49      ( complement
% 0.20/0.49      = ( ^ [X: $i > $o,U: $i] :
% 0.20/0.49            ~ ( X @ U ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(disjoint_decl,type,
% 0.20/0.49      disjoint: ( $i > $o ) > ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(disjoint,definition,
% 0.20/0.49      ( disjoint
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o] :
% 0.20/0.49            ( ( intersection @ X @ Y )
% 0.20/0.49            = emptyset ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(subset_decl,type,
% 0.20/0.49      subset: ( $i > $o ) > ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(subset,definition,
% 0.20/0.49      ( subset
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o] :
% 0.20/0.49          ! [U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49           => ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(meets_decl,type,
% 0.20/0.49      meets: ( $i > $o ) > ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(meets,definition,
% 0.20/0.49      ( meets
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o] :
% 0.20/0.49          ? [U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            & ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(misses_decl,type,
% 0.20/0.49      misses: ( $i > $o ) > ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(misses,definition,
% 0.20/0.49      ( misses
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o] :
% 0.20/0.49            ~ ? [U: $i] :
% 0.20/0.49                ( ( X @ U )
% 0.20/0.49                & ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Include definitions for relations
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  thf(cartesian_product_decl,type,
% 0.20/0.49      cartesian_product: ( $i > $o ) > ( $i > $o ) > $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(cartesian_product,definition,
% 0.20/0.49      ( cartesian_product
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i,V: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            & ( Y @ V ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(pair_rel_decl,type,
% 0.20/0.49      pair_rel: $i > $i > $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(pair_rel,definition,
% 0.20/0.49      ( pair_rel
% 0.20/0.49      = ( ^ [X: $i,Y: $i,U: $i,V: $i] :
% 0.20/0.49            ( ( U = X )
% 0.20/0.49            | ( V = Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(id_rel_decl,type,
% 0.20/0.49      id_rel: ( $i > $o ) > $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(id_rel,definition,
% 0.20/0.49      ( id_rel
% 0.20/0.49      = ( ^ [S: $i > $o,X: $i,Y: $i] :
% 0.20/0.49            ( ( S @ X )
% 0.20/0.49            & ( X = Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(sub_rel_decl,type,
% 0.20/0.49      sub_rel: ( $i > $i > $o ) > ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(sub_rel,definition,
% 0.20/0.49      ( sub_rel
% 0.20/0.49      = ( ^ [R1: $i > $i > $o,R2: $i > $i > $o] :
% 0.20/0.49          ! [X: $i,Y: $i] :
% 0.20/0.49            ( ( R1 @ X @ Y )
% 0.20/0.49           => ( R2 @ X @ Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(is_rel_on_decl,type,
% 0.20/0.49      is_rel_on: ( $i > $i > $o ) > ( $i > $o ) > ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(is_rel_on,definition,
% 0.20/0.49      ( is_rel_on
% 0.20/0.49      = ( ^ [R: $i > $i > $o,A: $i > $o,B: $i > $o] :
% 0.20/0.49          ! [X: $i,Y: $i] :
% 0.20/0.49            ( ( R @ X @ Y )
% 0.20/0.49           => ( ( A @ X )
% 0.20/0.49              & ( B @ Y ) ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(restrict_rel_domain_decl,type,
% 0.20/0.49      restrict_rel_domain: ( $i > $i > $o ) > ( $i > $o ) > $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(restrict_rel_domain,definition,
% 0.20/0.49      ( restrict_rel_domain
% 0.20/0.49      = ( ^ [R: $i > $i > $o,S: $i > $o,X: $i,Y: $i] :
% 0.20/0.49            ( ( S @ X )
% 0.20/0.49            & ( R @ X @ Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_diagonal_decl,type,
% 0.20/0.49      rel_diagonal: $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_diagonal,definition,
% 0.20/0.49      ( rel_diagonal
% 0.20/0.49      = ( ^ [X: $i,Y: $i] : ( X = Y ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_composition_decl,type,
% 0.20/0.49      rel_composition: ( $i > $i > $o ) > ( $i > $i > $o ) > $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_composition,definition,
% 0.20/0.49      ( rel_composition
% 0.20/0.49      = ( ^ [R1: $i > $i > $o,R2: $i > $i > $o,X: $i,Z: $i] :
% 0.20/0.49          ? [Y: $i] :
% 0.20/0.49            ( ( R1 @ X @ Y )
% 0.20/0.49            & ( R2 @ Y @ Z ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(reflexive_decl,type,
% 0.20/0.49      reflexive: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(reflexive,definition,
% 0.20/0.49      ( reflexive
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [X: $i] : ( R @ X @ X ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(irreflexive_decl,type,
% 0.20/0.49      irreflexive: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(irreflexive,definition,
% 0.20/0.49      ( irreflexive
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [X: $i] :
% 0.20/0.49            ~ ( R @ X @ X ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(symmetric_decl,type,
% 0.20/0.49      symmetric: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(symmetric,definition,
% 0.20/0.49      ( symmetric
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [X: $i,Y: $i] :
% 0.20/0.49            ( ( R @ X @ Y )
% 0.20/0.49           => ( R @ Y @ X ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(transitive_decl,type,
% 0.20/0.49      transitive: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(transitive,definition,
% 0.20/0.49      ( transitive
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49          ! [X: $i,Y: $i,Z: $i] :
% 0.20/0.49            ( ( ( R @ X @ Y )
% 0.20/0.49              & ( R @ Y @ Z ) )
% 0.20/0.49           => ( R @ X @ Z ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(equiv_rel__decl,type,
% 0.20/0.49      equiv_rel: ( $i > $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(equiv_rel,definition,
% 0.20/0.49      ( equiv_rel
% 0.20/0.49      = ( ^ [R: $i > $i > $o] :
% 0.20/0.49            ( ( reflexive @ R )
% 0.20/0.49            & ( symmetric @ R )
% 0.20/0.49            & ( transitive @ R ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_codomain_decl,type,
% 0.20/0.49      rel_codomain: ( $i > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_codomain,definition,
% 0.20/0.49      ( rel_codomain
% 0.20/0.49      = ( ^ [R: $i > $i > $o,Y: $i] :
% 0.20/0.49          ? [X: $i] : ( R @ X @ Y ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_domain_decl,type,
% 0.20/0.49      rel_domain: ( $i > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_domain,definition,
% 0.20/0.49      ( rel_domain
% 0.20/0.49      = ( ^ [R: $i > $i > $o,X: $i] :
% 0.20/0.49          ? [Y: $i] : ( R @ X @ Y ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_inverse_decl,type,
% 0.20/0.49      rel_inverse: ( $i > $i > $o ) > $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(rel_inverse,definition,
% 0.20/0.49      ( rel_inverse
% 0.20/0.50      = ( ^ [R: $i > $i > $o,X: $i,Y: $i] : ( R @ Y @ X ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(equiv_classes_decl,type,
% 0.20/0.50      equiv_classes: ( $i > $i > $o ) > ( $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(equiv_classes,definition,
% 0.20/0.50      ( equiv_classes
% 0.20/0.50      = ( ^ [R: $i > $i > $o,S1: $i > $o] :
% 0.20/0.50          ? [X: $i] :
% 0.20/0.50            ( ( S1 @ X )
% 0.20/0.50            & ! [Y: $i] :
% 0.20/0.50                ( ( S1 @ Y )
% 0.20/0.50              <=> ( R @ X @ Y ) ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(restrict_rel_codomain_decl,type,
% 0.20/0.50      restrict_rel_codomain: ( $i > $i > $o ) > ( $i > $o ) > $i > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(restrict_rel_codomain,definition,
% 0.20/0.50      ( restrict_rel_codomain
% 0.20/0.50      = ( ^ [R: $i > $i > $o,S: $i > $o,X: $i,Y: $i] :
% 0.20/0.50            ( ( S @ Y )
% 0.20/0.50            & ( R @ X @ Y ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(rel_field_decl,type,
% 0.20/0.50      rel_field: ( $i > $i > $o ) > $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(rel_field,definition,
% 0.20/0.50      ( rel_field
% 0.20/0.50      = ( ^ [R: $i > $i > $o,X: $i] :
% 0.20/0.50            ( ( rel_domain @ R @ X )
% 0.20/0.50            | ( rel_codomain @ R @ X ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(well_founded_decl,type,
% 0.20/0.50      well_founded: ( $i > $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(well_founded,definition,
% 0.20/0.50      ( well_founded
% 0.20/0.50      = ( ^ [R: $i > $i > $o] :
% 0.20/0.50          ! [X: $i > $o,Z: $i] :
% 0.20/0.50            ( ( X @ Z )
% 0.20/0.50           => ? [Y: $i] :
% 0.20/0.50                ( ( X @ Y )
% 0.20/0.50                & ! [W: $i] :
% 0.20/0.50                    ( ( R @ Y @ W )
% 0.20/0.50                   => ~ ( X @ W ) ) ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(upwards_well_founded_decl,type,
% 0.20/0.50      upwards_well_founded: ( $i > $i > $o ) > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(upwards_well_founded,definition,
% 0.20/0.50      ( upwards_well_founded
% 0.20/0.50      = ( ^ [R: $i > $i > $o] :
% 0.20/0.50          ! [X: $i > $o,Z: $i] :
% 0.20/0.50            ( ( X @ Z )
% 0.20/0.50           => ? [Y: $i] :
% 0.20/0.50                ( ( X @ Y )
% 0.20/0.50                & ! [W: $i] :
% 0.20/0.50                    ( ( R @ Y @ Y )
% 0.20/0.50                   => ~ ( X @ W ) ) ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  thf(a,type,
% 0.20/0.50      a: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(thm,conjecture,
% 0.20/0.50      ! [R: $i > $i > $o] :
% 0.20/0.50        ( ( subset @ ( rel_domain @ R ) @ a )
% 0.20/0.50       => ( sub_rel @ R
% 0.20/0.50          @ ( cartesian_product @ a
% 0.20/0.50            @ ^ [X: $i] : $true ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.JN5289HRHo/cvc5---1.0.5_31680.p...
% 0.20/0.50  (declare-sort $$unsorted 0)
% 0.20/0.50  (declare-fun tptp.in ($$unsorted (-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.in (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (@ M X))))
% 0.20/0.50  (declare-fun tptp.is_a ($$unsorted (-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.is_a (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (@ M X))))
% 0.20/0.50  (declare-fun tptp.emptyset ($$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.emptyset (lambda ((X $$unsorted)) false)))
% 0.20/0.50  (declare-fun tptp.unord_pair ($$unsorted $$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.unord_pair (lambda ((X $$unsorted) (Y $$unsorted) (U $$unsorted)) (or (= U X) (= U Y)))))
% 0.20/0.50  (declare-fun tptp.singleton ($$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.singleton (lambda ((X $$unsorted) (U $$unsorted)) (= U X))))
% 0.20/0.50  (declare-fun tptp.union ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))
% 0.20/0.50  (declare-fun tptp.excl_union ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.excl_union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (let ((_let_1 (@ Y U))) (let ((_let_2 (@ X U))) (or (and _let_2 (not _let_1)) (and (not _let_2) _let_1)))))))
% 0.20/0.50  (declare-fun tptp.intersection ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.intersection (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))
% 0.20/0.50  (declare-fun tptp.setminus ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.setminus (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (not (@ Y U))))))
% 0.20/0.50  (declare-fun tptp.complement ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.complement (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))
% 0.20/0.50  (declare-fun tptp.disjoint ((-> $$unsorted Bool) (-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.disjoint (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= (@ (@ tptp.intersection X) Y) tptp.emptyset))))
% 0.20/0.50  (declare-fun tptp.subset ((-> $$unsorted Bool) (-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.subset (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (forall ((U $$unsorted)) (=> (@ X U) (@ Y U))))))
% 0.20/0.50  (declare-fun tptp.meets ((-> $$unsorted Bool) (-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.meets (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (exists ((U $$unsorted)) (and (@ X U) (@ Y U))))))
% 0.20/0.50  (declare-fun tptp.misses ((-> $$unsorted Bool) (-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.misses (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (not (exists ((U $$unsorted)) (and (@ X U) (@ Y U)))))))
% 0.20/0.50  (declare-fun tptp.cartesian_product ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.cartesian_product (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted) (V $$unsorted)) (and (@ X U) (@ Y V)))))
% 0.20/0.50  (declare-fun tptp.pair_rel ($$unsorted $$unsorted $$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.pair_rel (lambda ((X $$unsorted) (Y $$unsorted) (U $$unsorted) (V $$unsorted)) (or (= U X) (= V Y)))))
% 0.20/0.50  (declare-fun tptp.id_rel ((-> $$unsorted Bool) $$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.id_rel (lambda ((S (-> $$unsorted Bool)) (X $$unsorted) (Y $$unsorted)) (and (@ S X) (= X Y)))))
% 0.20/0.50  (declare-fun tptp.sub_rel ((-> $$unsorted $$unsorted Bool) (-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.sub_rel (lambda ((R1 (-> $$unsorted $$unsorted Bool)) (R2 (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted) (Y $$unsorted)) (=> (@ (@ R1 X) Y) (@ (@ R2 X) Y))))))
% 0.20/0.50  (declare-fun tptp.is_rel_on ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) (-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.is_rel_on (lambda ((R (-> $$unsorted $$unsorted Bool)) (A (-> $$unsorted Bool)) (B (-> $$unsorted Bool))) (forall ((X $$unsorted) (Y $$unsorted)) (=> (@ (@ R X) Y) (and (@ A X) (@ B Y)))))))
% 0.20/0.50  (declare-fun tptp.restrict_rel_domain ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.restrict_rel_domain (lambda ((R (-> $$unsorted $$unsorted Bool)) (S (-> $$unsorted Bool)) (X $$unsorted) (Y $$unsorted)) (and (@ S X) (@ (@ R X) Y)))))
% 0.20/0.50  (declare-fun tptp.rel_diagonal ($$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.rel_diagonal (lambda ((X $$unsorted) (Y $$unsorted)) (= X Y))))
% 0.20/0.50  (declare-fun tptp.rel_composition ((-> $$unsorted $$unsorted Bool) (-> $$unsorted $$unsorted Bool) $$unsorted $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.rel_composition (lambda ((R1 (-> $$unsorted $$unsorted Bool)) (R2 (-> $$unsorted $$unsorted Bool)) (X $$unsorted) (Z $$unsorted)) (exists ((Y $$unsorted)) (and (@ (@ R1 X) Y) (@ (@ R2 Y) Z))))))
% 0.20/0.50  (declare-fun tptp.reflexive ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.reflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted)) (@ (@ R X) X)))))
% 0.20/0.50  (declare-fun tptp.irreflexive ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.irreflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted)) (not (@ (@ R X) X))))))
% 0.20/0.50  (declare-fun tptp.symmetric ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.symmetric (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted) (Y $$unsorted)) (=> (@ (@ R X) Y) (@ (@ R Y) X))))))
% 0.20/0.50  (declare-fun tptp.transitive ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.transitive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (let ((_let_1 (@ R X))) (=> (and (@ _let_1 Y) (@ (@ R Y) Z)) (@ _let_1 Z)))))))
% 0.20/0.50  (declare-fun tptp.equiv_rel ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.equiv_rel (lambda ((R (-> $$unsorted $$unsorted Bool))) (and (@ tptp.reflexive R) (@ tptp.symmetric R) (@ tptp.transitive R)))))
% 0.20/0.50  (declare-fun tptp.rel_codomain ((-> $$unsorted $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.rel_codomain (lambda ((R (-> $$unsorted $$unsorted Bool)) (Y $$unsorted)) (exists ((X $$unsorted)) (@ (@ R X) Y)))))
% 0.20/0.54  (declare-fun tptp.rel_domain ((-> $$unsorted $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.rel_domain (lambda ((R (-> $$unsorted $$unsorted Bool)) (X $$unsorted)) (exists ((Y $$unsorted)) (@ (@ R X) Y)))))
% 0.20/0.54  (declare-fun tptp.rel_inverse ((-> $$unsorted $$unsorted Bool) $$unsorted $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.rel_inverse (lambda ((R (-> $$unsorted $$unsorted Bool)) (X $$unsorted) (Y $$unsorted)) (@ (@ R Y) X))))
% 0.20/0.54  (declare-fun tptp.equiv_classes ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.equiv_classes (lambda ((R (-> $$unsorted $$unsorted Bool)) (S1 (-> $$unsorted Bool))) (exists ((X $$unsorted)) (and (@ S1 X) (forall ((Y $$unsorted)) (= (@ S1 Y) (@ (@ R X) Y))))))))
% 0.20/0.54  (declare-fun tptp.restrict_rel_codomain ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.restrict_rel_codomain (lambda ((R (-> $$unsorted $$unsorted Bool)) (S (-> $$unsorted Bool)) (X $$unsorted) (Y $$unsorted)) (and (@ S Y) (@ (@ R X) Y)))))
% 0.20/0.54  (declare-fun tptp.rel_field ((-> $$unsorted $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.rel_field (lambda ((R (-> $$unsorted $$unsorted Bool)) (X $$unsorted)) (or (@ (@ tptp.rel_domain R) X) (@ (@ tptp.rel_codomain R) X)))))
% 0.20/0.54  (declare-fun tptp.well_founded ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.well_founded (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X (-> $$unsorted Bool)) (Z $$unsorted)) (=> (@ X Z) (exists ((Y $$unsorted)) (and (@ X Y) (forall ((W $$unsorted)) (=> (@ (@ R Y) W) (not (@ X W)))))))))))
% 0.20/0.54  (declare-fun tptp.upwards_well_founded ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.upwards_well_founded (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X (-> $$unsorted Bool)) (Z $$unsorted)) (=> (@ X Z) (exists ((Y $$unsorted)) (and (@ X Y) (forall ((W $$unsorted)) (=> (@ (@ R Y) Y) (not (@ X W)))))))))))
% 0.20/0.54  (declare-fun tptp.a ($$unsorted) Bool)
% 0.20/0.54  (assert (not (forall ((R (-> $$unsorted $$unsorted Bool))) (=> (@ (@ tptp.subset (@ tptp.rel_domain R)) tptp.a) (@ (@ tptp.sub_rel R) (@ (@ tptp.cartesian_product tptp.a) (lambda ((X $$unsorted)) true)))))))
% 0.20/0.54  (set-info :filename cvc5---1.0.5_31680)
% 0.20/0.54  (check-sat-assuming ( true ))
% 0.20/0.54  ------- get file name : TPTP file name is SET651^3
% 0.20/0.54  ------- cvc5-thf : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_31680.smt2...
% 0.20/0.54  --- Run --ho-elim --full-saturate-quant at 10...
% 0.20/0.54  % SZS status Theorem for SET651^3
% 0.20/0.54  % SZS output start Proof for SET651^3
% 0.20/0.54  (
% 0.20/0.54  (let ((_let_1 (not (forall ((R (-> $$unsorted $$unsorted Bool))) (=> (@ (@ tptp.subset (@ tptp.rel_domain R)) tptp.a) (@ (@ tptp.sub_rel R) (@ (@ tptp.cartesian_product tptp.a) (lambda ((X $$unsorted)) true)))))))) (let ((_let_2 (= tptp.upwards_well_founded (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X (-> $$unsorted Bool)) (Z $$unsorted)) (=> (@ X Z) (exists ((Y $$unsorted)) (and (@ X Y) (forall ((W $$unsorted)) (=> (@ (@ R Y) Y) (not (@ X W)))))))))))) (let ((_let_3 (= tptp.well_founded (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X (-> $$unsorted Bool)) (Z $$unsorted)) (=> (@ X Z) (exists ((Y $$unsorted)) (and (@ X Y) (forall ((W $$unsorted)) (=> (@ (@ R Y) W) (not (@ X W)))))))))))) (let ((_let_4 (= tptp.rel_field (lambda ((R (-> $$unsorted $$unsorted Bool)) (X $$unsorted)) (or (@ (@ tptp.rel_domain R) X) (@ (@ tptp.rel_codomain R) X)))))) (let ((_let_5 (= tptp.restrict_rel_codomain (lambda ((R (-> $$unsorted $$unsorted Bool)) (S (-> $$unsorted Bool)) (X $$unsorted) (Y $$unsorted)) (and (@ S Y) (@ (@ R X) Y)))))) (let ((_let_6 (= tptp.equiv_classes (lambda ((R (-> $$unsorted $$unsorted Bool)) (S1 (-> $$unsorted Bool))) (exists ((X $$unsorted)) (and (@ S1 X) (forall ((Y $$unsorted)) (= (@ S1 Y) (@ (@ R X) Y))))))))) (let ((_let_7 (= tptp.rel_inverse (lambda ((R (-> $$unsorted $$unsorted Bool)) (X $$unsorted) (Y $$unsorted)) (@ (@ R Y) X))))) (let ((_let_8 (= tptp.rel_domain (lambda ((R (-> $$unsorted $$unsorted Bool)) (X $$unsorted)) (exists ((Y $$unsorted)) (@ (@ R X) Y)))))) (let ((_let_9 (= tptp.rel_codomain (lambda ((R (-> $$unsorted $$unsorted Bool)) (Y $$unsorted)) (exists ((X $$unsorted)) (@ (@ R X) Y)))))) (let ((_let_10 (= tptp.equiv_rel (lambda ((R (-> $$unsorted $$unsorted Bool))) (and (@ tptp.reflexive R) (@ tptp.symmetric R) (@ tptp.transitive R)))))) (let ((_let_11 (= tptp.transitive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (let ((_let_1 (@ R X))) (=> (and (@ _let_1 Y) (@ (@ R Y) Z)) (@ _let_1 Z)))))))) (let ((_let_12 (= tptp.symmetric (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted) (Y $$unsorted)) (=> (@ (@ R X) Y) (@ (@ R Y) X))))))) (let ((_let_13 (= tptp.irreflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted)) (not (@ (@ R X) X))))))) (let ((_let_14 (= tptp.reflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted)) (@ (@ R X) X)))))) (let ((_let_15 (= tptp.rel_composition (lambda ((R1 (-> $$unsorted $$unsorted Bool)) (R2 (-> $$unsorted $$unsorted Bool)) (X $$unsorted) (Z $$unsorted)) (exists ((Y $$unsorted)) (and (@ (@ R1 X) Y) (@ (@ R2 Y) Z))))))) (let ((_let_16 (= tptp.rel_diagonal (lambda ((X $$unsorted) (Y $$unsorted)) (= X Y))))) (let ((_let_17 (= tptp.restrict_rel_domain (lambda ((R (-> $$unsorted $$unsorted Bool)) (S (-> $$unsorted Bool)) (X $$unsorted) (Y $$unsorted)) (and (@ S X) (@ (@ R X) Y)))))) (let ((_let_18 (= tptp.is_rel_on (lambda ((R (-> $$unsorted $$unsorted Bool)) (A (-> $$unsorted Bool)) (B (-> $$unsorted Bool))) (forall ((X $$unsorted) (Y $$unsorted)) (=> (@ (@ R X) Y) (and (@ A X) (@ B Y)))))))) (let ((_let_19 (= tptp.sub_rel (lambda ((R1 (-> $$unsorted $$unsorted Bool)) (R2 (-> $$unsorted $$unsorted Bool))) (forall ((X $$unsorted) (Y $$unsorted)) (=> (@ (@ R1 X) Y) (@ (@ R2 X) Y))))))) (let ((_let_20 (= tptp.id_rel (lambda ((S (-> $$unsorted Bool)) (X $$unsorted) (Y $$unsorted)) (and (@ S X) (= X Y)))))) (let ((_let_21 (= tptp.pair_rel (lambda ((X $$unsorted) (Y $$unsorted) (U $$unsorted) (V $$unsorted)) (or (= U X) (= V Y)))))) (let ((_let_22 (= tptp.cartesian_product (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted) (V $$unsorted)) (and (@ X U) (@ Y V)))))) (let ((_let_23 (= tptp.misses (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (not (exists ((U $$unsorted)) (and (@ X U) (@ Y U)))))))) (let ((_let_24 (= tptp.meets (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (exists ((U $$unsorted)) (and (@ X U) (@ Y U))))))) (let ((_let_25 (= tptp.subset (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (forall ((U $$unsorted)) (=> (@ X U) (@ Y U))))))) (let ((_let_26 (= tptp.disjoint (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= (@ (@ tptp.intersection X) Y) tptp.emptyset))))) (let ((_let_27 (= tptp.complement (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))) (let ((_let_28 (= tptp.setminus (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (not (@ Y U))))))) (let ((_let_29 (= tptp.intersection (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))) (let ((_let_30 (= tptp.excl_union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (let ((_let_1 (@ Y U))) (let ((_let_2 (@ X U))) (or (and _let_2 (not _let_1)) (and (not _let_2) _let_1)))))))) (let ((_let_31 (= tptp.union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))) (let ((_let_32 (= tptp.singleton (lambda ((X $$unsorted) (U $$unsorted)) (= U X))))) (let ((_let_33 (= tptp.unord_pair (lambda ((X $$unsorted) (Y $$unsorted) (U $$unsorted)) (or (= U X) (= U Y)))))) (let ((_let_34 (= tptp.emptyset (lambda ((X $$unsorted)) false)))) (let ((_let_35 (= tptp.is_a (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (@ M X))))) (let ((_let_36 (= tptp.in (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (@ M X))))) (let ((_let_37 (forall ((U $$unsorted) (BOUND_VARIABLE_1366 $$unsorted)) (or (not (ho_3 (ho_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5 U) BOUND_VARIABLE_1366)) (ho_3 k_2 U))))) (let ((_let_38 (ho_3 k_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_7))) (let ((_let_39 (ho_3 (ho_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_7) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6))) (let ((_let_40 (not _let_39))) (let ((_let_41 (or _let_40 _let_38))) (let ((_let_42 (not _let_37))) (let ((_let_43 (or _let_42 _let_40 _let_38))) (let ((_let_44 (forall ((BOUND_VARIABLE_1509 |u_(-> $$unsorted $$unsorted Bool)|) (BOUND_VARIABLE_1417 $$unsorted) (BOUND_VARIABLE_1415 $$unsorted)) (or (not (forall ((U $$unsorted) (BOUND_VARIABLE_1366 $$unsorted)) (or (not (ho_3 (ho_4 BOUND_VARIABLE_1509 U) BOUND_VARIABLE_1366)) (ho_3 k_2 U)))) (not (ho_3 (ho_4 BOUND_VARIABLE_1509 BOUND_VARIABLE_1415) BOUND_VARIABLE_1417)) (ho_3 k_2 BOUND_VARIABLE_1415))))) (let ((_let_45 (not _let_43))) (let ((_let_46 (not _let_44))) (let ((_let_47 (ASSUME :args (_let_36)))) (let ((_let_48 (ASSUME :args (_let_35)))) (let ((_let_49 (EQ_RESOLVE (ASSUME :args (_let_34)) (MACRO_SR_EQ_INTRO :args (_let_34 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_50 (EQ_RESOLVE (ASSUME :args (_let_33)) (MACRO_SR_EQ_INTRO :args (_let_33 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_51 (EQ_RESOLVE (ASSUME :args (_let_32)) (MACRO_SR_EQ_INTRO :args (_let_32 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_52 (ASSUME :args (_let_31)))) (let ((_let_53 (ASSUME :args (_let_30)))) (let ((_let_54 (ASSUME :args (_let_29)))) (let ((_let_55 (ASSUME :args (_let_28)))) (let ((_let_56 (ASSUME :args (_let_27)))) (let ((_let_57 (EQ_RESOLVE (EQ_RESOLVE (ASSUME :args (_let_26)) (MACRO_SR_EQ_INTRO :args (_let_26 SB_DEFAULT SBA_FIXPOINT))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47) :args ((= tptp.disjoint (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= tptp.emptyset (@ (@ tptp.intersection X) Y)))) SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_58 (EQ_RESOLVE (ASSUME :args (_let_25)) (MACRO_SR_EQ_INTRO :args (_let_25 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_59 (EQ_RESOLVE (ASSUME :args (_let_24)) (MACRO_SR_EQ_INTRO :args (_let_24 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_60 (EQ_RESOLVE (ASSUME :args (_let_23)) (MACRO_SR_EQ_INTRO :args (_let_23 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_61 (ASSUME :args (_let_22)))) (let ((_let_62 (EQ_RESOLVE (ASSUME :args (_let_21)) (MACRO_SR_EQ_INTRO :args (_let_21 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_63 (ASSUME :args (_let_20)))) (let ((_let_64 (EQ_RESOLVE (ASSUME :args (_let_19)) (MACRO_SR_EQ_INTRO :args (_let_19 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_65 (EQ_RESOLVE (ASSUME :args (_let_18)) (MACRO_SR_EQ_INTRO :args (_let_18 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_66 (ASSUME :args (_let_17)))) (let ((_let_67 (ASSUME :args (_let_16)))) (let ((_let_68 (EQ_RESOLVE (ASSUME :args (_let_15)) (MACRO_SR_EQ_INTRO :args (_let_15 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_69 (ASSUME :args (_let_14)))) (let ((_let_70 (ASSUME :args (_let_13)))) (let ((_let_71 (EQ_RESOLVE (ASSUME :args (_let_12)) (MACRO_SR_EQ_INTRO :args (_let_12 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_72 (EQ_RESOLVE (ASSUME :args (_let_11)) (MACRO_SR_EQ_INTRO :args (_let_11 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_73 (EQ_RESOLVE (ASSUME :args (_let_10)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_72 _let_71 _let_70 _let_69 _let_68 _let_67 _let_66 _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47) :args (_let_10 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_74 (EQ_RESOLVE (ASSUME :args (_let_9)) (MACRO_SR_EQ_INTRO :args (_let_9 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_75 (EQ_RESOLVE (ASSUME :args (_let_8)) (MACRO_SR_EQ_INTRO :args (_let_8 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_76 (ASSUME :args (_let_7)))) (let ((_let_77 (EQ_RESOLVE (ASSUME :args (_let_6)) (MACRO_SR_EQ_INTRO :args (_let_6 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_78 (ASSUME :args (_let_5)))) (let ((_let_79 (EQ_RESOLVE (ASSUME :args (_let_1)) (TRANS (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT)) (MACRO_SR_EQ_INTRO (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_3)) (MACRO_SR_EQ_INTRO :args (_let_3 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_78 _let_77 _let_76 _let_75 _let_74 _let_73 _let_72 _let_71 _let_70 _let_69 _let_68 _let_67 _let_66 _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47) :args (_let_4 SB_DEFAULT SBA_FIXPOINT))) _let_78 _let_77 _let_76 _let_75 _let_74 _let_73 _let_72 _let_71 _let_70 _let_69 _let_68 _let_67 _let_66 _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47) :args ((not (forall ((R (-> $$unsorted $$unsorted Bool))) (or (not (@ (@ tptp.subset (@ tptp.rel_domain R)) tptp.a)) (@ (@ tptp.sub_rel R) (@ (@ tptp.cartesian_product tptp.a) (lambda ((BOUND_VARIABLE_1395 $$unsorted)) true)))))) SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (forall ((R (-> $$unsorted $$unsorted Bool)) (BOUND_VARIABLE_1417 $$unsorted) (BOUND_VARIABLE_1415 $$unsorted)) (or (not (forall ((U $$unsorted) (BOUND_VARIABLE_1366 $$unsorted)) (or (not (@ (@ R U) BOUND_VARIABLE_1366)) (@ tptp.a U)))) (not (@ (@ R BOUND_VARIABLE_1415) BOUND_VARIABLE_1417)) (@ tptp.a BOUND_VARIABLE_1415)))) _let_46))))))) (let ((_let_80 (or))) (let ((_let_81 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_79) :args (_let_46))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_46) _let_44))) (REFL :args (_let_45)) :args _let_80)) _let_79 :args (_let_45 true _let_44)))) (let ((_let_82 (REFL :args (_let_43)))) (let ((_let_83 (not _let_41))) (let ((_let_84 (_let_37))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_84) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_7 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_84)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_41)) :args ((or _let_40 _let_38 _let_83))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_43 1)) (CONG _let_82 (MACRO_SR_PRED_INTRO :args ((= (not _let_40) _let_39))) :args _let_80)) :args ((or _let_39 _let_43))) _let_81 :args (_let_39 true _let_43)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_43 2)) _let_81 :args ((not _let_38) true _let_43)) :args (_let_83 false _let_39 true _let_38)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_43 0)) (CONG _let_82 (MACRO_SR_PRED_INTRO :args ((= (not _let_42) _let_37))) :args _let_80)) :args ((or _let_37 _let_43))) _let_81 :args (_let_37 true _let_43)) :args (false true _let_41 false _let_37)) :args (_let_36 _let_35 _let_34 _let_33 _let_32 _let_31 _let_30 _let_29 _let_28 _let_27 _let_26 _let_25 _let_24 _let_23 _let_22 _let_21 _let_20 _let_19 _let_18 _let_17 _let_16 _let_15 _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 _let_4 _let_3 _let_2 _let_1 true)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 0.20/0.54  )
% 0.20/0.54  % SZS output end Proof for SET651^3
% 0.20/0.54  % cvc5---1.0.5 exiting
% 0.20/0.55  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------